Four Mechanistic Pathways for Aromatic Substitution: I. Electrophilic Aromatic Substitution

\[
\begin{align*}
\text{H} & \quad \text{E}^+ \\
\text{[A}_E\text{]} & \\
\rightarrow & \\
\text{H} & \quad \text{E}^+ \\
\text{[D}_E\text{]} &
\end{align*}
\]

resonance stabilized cationic intermediate

\[
\begin{align*}
\text{H} & \quad \text{E} \\
\text{H} & \quad \text{E} \\
\text{H} & \quad \text{E} \\
\end{align*}
\]

MO pictures of the cationic intermediate

The LUMO shows positions of electron deficiency

this filled orbital shows a $\sigma \rightarrow a \pi$-type interaction
Four Mechanistic Pathways for Aromatic Substitution: II. Nucleophilic Aromatic Substitution

The HOMO shows positions of surplus electron density

resonance stabilized anionic intermediate
Four Mechanistic Pathways for Aromatic Substitution:
III. Substitution via Arenediazonium Ion

Two views of the aryl cation’s LUMO

The LUMO shows positions of electron deficiency

The unsubstituted carbon of the aryl cation approaches sp hybridization and distorts the ring’s geometry
Four Mechanistic Pathways for Aromatic Substitution: IV. Substitution via Benzyne Intermediate

\[
\text{[E2]} \quad \text{Cl}^\text{N}H_2, NH_3 (l), -33 \text{ kC} \quad \text{H}N_2 + \text{Cl}^\text{N}H_2, NH_3 (l), -33 \text{ kC} \quad \text{NaNH}_2, \text{NH}_3 (l), -33 \text{ kC} \quad \text{Cl}^\text{N}H_2 + \text{NH}_3 + \text{Cl}^- \\
\]

The LUMO shows positions of electron deficiency.