1. Calculate ΔH for the reaction: $3\text{O}_2(\text{g}) + 4\text{NH}_3(\text{g}) \rightarrow 2\text{N}_2(\text{g}) + 6\text{H}_2\text{O}(\text{g})$, given the following data:

 1. $2\text{NH}_3(\text{g}) \rightarrow \text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \quad \Delta H = 92 \text{ kJ}$
 2. $2\text{H}_2\text{O}(\text{g}) \rightarrow 2\text{H}_2(\text{g}) + \text{O}_2(\text{g}) \quad \Delta H = 484 \text{ kJ}$

 a) -1636 kJ b) 1636 kJ c) -1268 kJ d) -1360 kJ e) -392 kJ

2. Given the following enthalpies of formation, determine the heat involved when a 2.10 mol sample of methane is reacted with excess chlorine gas at constant pressure according to the following balanced equation:

 $\text{CH}_4(\text{g}) + 4\text{Cl}_2(\text{g}) \rightarrow \text{CCl}_4(\text{l}) + 4\text{HCl}(\text{g})$

 ΔH^0_f (kJ/mol) -75 -135 -92

 a) 428 kJ are released b) 899 kJ are released c) 899 kJ are absorbed d) 1210 kJ are released e) 1210 kJ are absorbed

3. A 30.0-g sample of a liquid at 15.0°C is mixed with a 55.0-g sample of the same liquid at 80.0°C. Assuming the heat capacity of the liquid is independent of temperature, determine the final temperature.

 a) 37.4°C b) 47.5°C c) 51.3°C d) 57.1°C e) 62.7°C

4. Consider the endothermic reaction $\text{A}_2(\text{g}) + \text{B}_2(\text{g}) \rightarrow 2\text{AB}(\text{g})$. Which of the following correctly describes which are more stable and which have higher average bond energies?

<table>
<thead>
<tr>
<th>More stable</th>
<th>Higher average bond energies</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Reactants</td>
<td>Reactants</td>
</tr>
<tr>
<td>b) Reactants</td>
<td>Products</td>
</tr>
<tr>
<td>c) Products</td>
<td>Products</td>
</tr>
<tr>
<td>d) Products</td>
<td>Reactants</td>
</tr>
</tbody>
</table>

5. Calculate ΔE for a system that releases 28 J of heat while 63 J of work is done on it.

 a) 35 J b) 91 J c) -35 J d) -91 J e) 28 J
6. Which of the following has the highest ionization energy?

 a) Mg b) Mg\(^+\) c) Mg\(^{2+}\) d) Mg\(^{3+}\) e) all the same

7. Which of the following does not correctly match the species with the expected electron configuration?

 a) A ground state calcium atom [Ar] 4s\(^2\)
 b) The most stable ion for bromine [Ar] 4s\(^7\)3d\(^{10}\)4p\(^6\)
 c) An excited state of sulfur [Ne] 3s\(^2\)3p\(^3\)4s\(^1\)
 d) At least two of the above (a-c) are incorrectly matched.
 e) All of the above (a-c) are correctly matched.

8. How many unpaired electrons are expected in the ground state phosphorus atom?

 a) 1 b) 2 c) 3 d) 4 e) 5

9. How many electrons can be described by the quantum numbers \(n = 4, l = 3, m_s = -\frac{1}{2}\)?

 a) 2 b) 7 c) 10 d) 14 e) 32

10. Consider the following orderings.

 I. Al < Si < P < Cl
 II. Be < Mg < Ca < Sr
 III. I < Br < Cl < F
 IV. Na\(^+\) < Mg\(^{2+}\) < Al\(^{3+}\) < Si\(^{4+}\)

 How many of these give(s) a correct trend in ionization energy?

 a) 0 b) 1 c) 2 d) 3 e) 4