How to determine the pH of a solution:
Use these steps to determine the pH of almost any solution (we will use this over and over...know this one!) Let’s use 1.0 M acetic acid for this example.

1. List the major species that are in solution:
 - Acetic acid is a weak acid, so will not fully dissociate (K < 1), acetic acid is major
 - Water is also present
 Our two major species are acetic acid and water.

2. Pick the strongest acid (or base), write out a chemical reaction that shows how H⁺ (or OH⁻) is formed
 - Acetic acid is a stronger acid than water. If will dissociate to give H⁺ in the following general fashion:
 \[\text{HA (aq)} + \text{H}_2\text{O (l)} \rightleftharpoons \text{H}^+ \text{(aq)} + \text{A}^- \text{(aq)} \]

3. Determine how much H⁺ (or OH⁻) will be formed
 Using the reaction we have just described, we will use our old friend the ICE table:

 \[
 \begin{array}{cccc}
 & \text{HA (aq)} & \text{H}_2\text{O (l)} & \text{H}^+ \text{(aq)} & \text{A}^- \text{(aq)} \\
 I & 1.0 \text{ M} & ----- & 0 & 0 \\
 C & -x & ----- & +x & +x \\
 E & 1.0 \text{ M} - x & ----- & +x & +x \\
 \end{array}
 \]

 From this ICE table we can write a \(K_a \) expression of \(K_a = \frac{(x)(x)}{1.0-x} \). If we had a numerical value for \(K_a \) we could use the quadratic equation to solve for \(x \). \(K_a \) in this example is 1.8 x 10⁻⁵ which tells us that equilibrium is far to the left (very little of the acid will dissociate to \(H^+ \) and \(A^- \)). For this reason we are going to make an approximation: 1.0 M – \(x \) is essentially equal to 1.0 M. This simplifies the \(K_a \) expression to: \(K_a = \frac{(x)(x)}{1.0} \) which will allow us to simply solve for \(x = 0.00424 \). We must check this assumption to make sure it is valid, we will cover that more in depth during lecture. In our ICE table \(x \) is equal to the \([H^+]\).

4. Solve for pH (pH = -log[H⁺])
 \[\text{pH} = - \log[0.00424] = 2.37 \]

Solutions with more than one acid present
Most of the time this situation actually isn’t too bad. The key is to look at the \(K_a \) values. If the \(K_a \) values are quite different (a few orders of magnitude at least) we can assume that the acidic protons will be removed one at a time. For example, lactic acid has a \(K_a \) of 1.4 x 10⁻⁴ while HOCl has a \(K_a \) of 3.5 x 10⁻⁸. The lactic acid proton will be completely removed before the HOCl proton will dissociate.

Percent dissociation:

\[
\% \text{ dissociation} = \frac{[H^+]}{[HA]} \times 100
\]

If we look at the concentration of the \(H^+ \) that has been formed during the dissociation process we can determine \% dissociation.